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A case for Taylor hardening during primary and 
steady-state creep in alurniniurn and type 304 
stainless steel 
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Lawrence Livermore National Laboratory. PO Box 808, L-355, Livermore, 
California 94550, USA 

Previous elevated-temperature experiments on 304 stainless steel clearly show that the density 
of dislocations within the subgrain interior influences the flow stress at a given strain rate and 
temperature. A re-evaluation shows that the hardening is consistent with the Taylor relation if 
a linear superposition of solute hardening (T 0, or the stress necessary to cause dislocation 
motion in the absence of a dislocation substructure) and dislocation (o~eb~o 1/2) hardening is 
assumed. The same Taylor relation is applicable to steady-state structures of aluminium if the 
yield stress of annealed aluminium is assumed equal to T 0. New tests on aluminium deforming 
under constant-strain-rate creep conditions show a monotonic increase in the dislocation 
density with strain. This and the constant-stress creep trends are shown to be possibly con- 
sistent with Taylor hardening. 

1. In troduc t ion  
Most theories for five-power-law creep (T > 0.6 Tin, 
where Tm is the melting temperature) of pure metals 
and Class II alloys rely upon some aspect of the 
subgrain substructure to describe the rate-controlling 
process. Many of the more recent theories rely upon 
the details of the subgrain boundaries such as the 
spacing, d, of dislocations that compose the bound- 
aries (related to the misorientation angle, 0, across 
boundaries) [1-9] and/or the subgrain size, 2 [10]. The 
dislocations not associated with the subgrain bound- 
aries, which can form a Frank network, are less com- 
monly associated with the rate-controlling process of 
five-power-law creep. Dislocation network theories 
[11-16] generally suppose that the creep behaviour is 
explained in terms of network coarsening (diffusion- 
controlled) and the activation of critical-size links in 
the network into sources of gliding dislocations. The 
network-based theories have been refined in recent 
years [13, 16] although acceptance has been relatively 
limited. 

This is perhaps somewhat unjustified in view of 
some more recent experiments. For example, experi- 
ments under power-law or near-power-law conditions 
show that there is really no doubt now that the 
elevated-temperature flow stress of 304 stainless steel, 
a Class II alloy, is controlled by the density (~) of 
dislocations not associated with subgrain boundaries 
(network dislocations) [17-21]. Perhaps more inter- 
estingly, recent experiments have also shown that the 
flow properties of aluminium (under five-power-law 
conditions) appear independent of the subgrain size 
and the misorientation angle across subgrain bound- 
aries [22, 23]. Power-law creep in aluminium has been 
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both traditionally and more recently associated with 
subgrains [4, 5, 24-29]. Of course, if a particular 
feature (d, 2, or ~o) is associated with the rate-control- 
ling process for five-power-law creep, then the yield 
stress at a fixed T and strain rate ~ (within the power- 
law range) would be expected to be a function of the 
dimensions of this (rather than another) feature. 

This paper has two parts. First, a re-evaluation of 
the earlier 304 stainless steel experiments by the 
author [17] will show that the influence of dislocation 
density on the flow stress is consistent with the Taylor 
equation: 

Z]T,~ = ~'0 + ~ G b ~  )1/2 (1)  

where ~tT.~ is the applied shear stress at a given tem- 
perature and strain rate, G is the shear modulus, b is 
the Burger's vector, ~ is a constant that has been 
experimentally found to be roughly 0.5 [30], and T 0 is 
the stress required to move a dislocation in the 
absence of other dislocations that can arise as a result 
of solutes or a Peierls-type stress. This equation was 
shown to describe reasonably 304 data by assuming 
that v0 is approximately equal to the yield stress of the 
annealed alloy. Furthermore, analysis will show that 
the flow stress of aluminium (with various steady-state 
or stage II creep microstructures) at a given tem- 
perature and strain also obeys Equation 1. 

Second, special tests were performed in this research 
to establish the trends of dislocation density against 
strain in aluminium deforming at elevated tem- 
perature under constant-strain-rate conditions. It will 
be shown that the microstructure and flow character- 
istics of aluminium undergoing primary (or Stage I) 
creep under either constant-stress or constant-strain- 
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rate power-law creep conditions are not inconsistent 
with Taylor hardening. 

2. Experimental procedure 
The aluminium used in this study was of 99.999% 
purity. Solid specimens were torsionally deformed to 
primary and steady-state creep strains under constant- 
strain-rate conditions and were water-quenched 
immediately after deformation. The specimens were 
then prepared for examination by transmission elec- 
tron microscopy. In this study the dislocation density 
was measured in a manner identical to that of an 
earlier study by the author [23], except that the grind- 
ing step was eliminated. Although these previous 
sample-preparation techniques were reliable for 
measurements of 2 and misorientation angle 0, they 
may have been slightly inaccurate for 0 determi- 
nations because of the grinding step (possibly a 
10-20% overestimation in 0). Thick sections were cut 
from the surface.of the quenched torsion specimens 
using a 0.15-mm thick diamond blade. The sections 
were then jet-polished to perforation without involv- 
ing a grinding step. Fifty TEM micrographs were 
taken at each strain level and an average density of 
dislocations not associated with subgrain boundaries 
was determined. 

3. Analysis and results 
In earlier work, the author [17, 18] specially prepared 
specimens of 304 stainless steel having various com- 
binations of 2 and ~ microstructures by utilizing a 
variety of thermal and mechanical treatments. The 
specimens were mechanically tested at a given tem- 
perature and strain rate that nearly corresponded to 
the five-power-law creep range. It was found that the 
dislocation density rather than the subgrain size domi- 
nated the strength. The flow stress was originally 
described by a root-mean-square (r.m.s.) equation 
into which solute strengthening and 2 and ~ values 
could be substituted. Both the reciprocal subgrain size 
and ~ terms of the r.m.s, equation were raised to 
exponents of 0.24. Alternately, the strength-predicting 
equation could take the form of Equation 1 with only 
a minor loss (if any) of predictive capability [17]. 
Furthermore, it might be argued that the superposi- 
tion of solute and dislocation hardening should follow 
a linear rather than r.m.s, form [31]. Figure 1 plots 
the yield strength at 750 ~ C (0.57 Tin) and ~ = 9.6 x 
10-4sec -1. The data can clearly be described by an 
equation that is consistent with Equation 1: 

"C]750~ 9 , 6 x  10 4sec-I  = 17y( . . . . .  led) + c(Gbo~/= (2) 

Furthermore, ~ -  0.49, which is consistent with 
observed values for Taylor hardening. An important 
point here is that for a given dislocation density, the 
flow stress is nearly independent of 2 since, as discussed 
in the earlier work [17], there is only a small increase 
in the strength by subgrain refinement at a given ~. 
The r.m.s, equation that described the data of Fig. 1 
also accurately predicted the Stage I flow for 304 
stainless steel at 0.63 and 0.74 Tm based on the micro- 
structures observed at various primary creep strains at 
each temperature. This, of course, suggested that 
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Figure l The elevated-temperature flow stress of  304 stainless steel 
is plotted as a function of the square root of  the dislocation density. 
Note that the flow stress is relatively insensitive to dramatic changes 
in the subgrain size. 

Equation 2 is valid at temperatures well above 
0.57 T~,. It should perhaps be mentioned that the 
steady-state flow stress o-~ has been conventionally 
[1, 32, 33] related to the steady-state dislocation 
density ~ss by 

(~r/E)ss = KO~ 2 (3) 

where K is a constant and E is Young's modulus. 
However, this is an artificial Taylor relationship since 
the steady-state stresses are associated with different 
temperatures and/or strain rates, rather than fixed 
values as in Equation 1. 

The kind of experiment illustrated by Fig. 1 has also 
been performed on steady-state creep structures of 
aluminium [25, 28]. In one case [28], aluminium 
specimens were deformed to various steady-state 
stresses at a given temperature by varying the applied 
strain rate. The strain rate was very quickly changed 
to a common rate after steady state was achieved and 
the new plastic-flow (yield) stress (O-y) was noted. The 
subgrain sizes were measured at each steady state, so 
that the dependence of the flow stress at a specific 
temperature and strain rate on the subgrain size could 
be determined. The data of Young et al. [28] is shown 
in Fig. 2. The data shows that at 450~ (0.77 Tin), 
smaller subgrain sizes are associated with higher 
strength. Similarly, Kikuchi and Yamaguchi [25] 
deformed three specimens at various temperatures 
and strain rates, again to steady state. The specimens 
were then quickly cooled at 300 ~ C and re-deformed at 
a fixed strain rate. The new flow stresses are also 
related to the measured (steady-state) subgrain sizes 
produced at the higher temperatures in Fig. 2. The 
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Figure 2 The flow stress of  steady-state-substructure a luminium is plotted as a function of  the reciprocal (steady-state) subgrain size raised 
to the 0.7 power for two elevated temperatures. The inset shows the stress-strain behaviour of  annealed aluminium at temperature and 
strain-rate conditions identical to one set of  the plotted data. 

inset shows the stress-strain behaviour of annealed 
aluminium at 450~ Note that for the annealed 
material (2 = oo, and 0 is relatively low) the yield 
stress is a substantial fraction (0.35) of the steady-state 
stress. This means that, as with Equation 1, we need 
to consider the stress a0 necessary for yielding in 
the absence of a dislocation substructure, which is 
assumed nearly equal to the yield stress of annealed 
aluminium. This suggests a simple relationship to 
describe the data of Fig. 2: 

err[r, ~ = cr 0 + kl(1/2ss) ~ (4) 

where kl is a constant. Young et al. [28] suggested an 
alternative equation that did not include a % term: 

a~lT.~ = k = ( l / L s )  ~ (5) 

It was later suggested that exponents of roughly this 
value (_~ 0.40) may be valid for a variety of materials 
[10]. The reciprocal subgrain size exponent is lower 
than that of Equation 4 because the a0 term was not 
considered, which, as the Fig. 2 inset (as well as Fig. 5) 
shows, is probably necessary. The explanation for the 
fact that the k] values for the two studies of Fig. 2 are 
different is not readily apparent. The value kl may be 
temperature-dependent or there may be a systematic 
overestimation of subgrain sizes by Kikuchi and 
Yamaguchi [25]. The latter possibility is based on 

comparison of their values of  2 with other strudies [34] 
at comparable steady-state stress levels. 

Equation 4 was based on data from steady-state 
structures. Since the steady-state subgrain size gen- 
erally is directly related to the steady-state dislocation 
density, ~ss, in the subgrain interiors, we can relate 
arJ r.~ in Equation 4 to ~ .  Generally, it has been found 
that [32-34]: 

( a l E ) .  = K ' ( l12~)  (6) 

where K'  is a constant. Again, Equation 6 should not 
be confused with Equations 4 and 5, since the latter 
two predict strength at a specific T, ~ for various 
subgrain sizes, while the former relates changes in the 
steady-state flow stress (different temperatures and 
strain rates) to changes in 2s~. It has also been found 
that: 

(a/E)'ss = K " ( 0 . )  (7) 

where, as pointed out by Takeuchi and Argon [33], 1 
varies between 1 and 2. Substituting Equation 7 into 
Equation 6 provides a relationship between Os~ and 2~ 
and hence the desired relationship between ar[r,~ and 
0~. Classically, l has been assigned a value of 2 (see 
[7, 24, 32, 35, 36]), perhaps partly because the equation 
reduces to Equation 3 which, as mentioned earlier, has 
(artificial) palatability in terms of  the Taylor equation. 
In reality, l may not be equal to 2. A few experiments 
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Figure 3 The reciprocal (steady-state) dislocation density is plotted 
as a function of the modulus-compensated steady-state. The data 
is that of Blum et al. [24] for aluminium. The slope of the line is 
about 1.57. 

have been performed on aluminium to establish l 
[24, 36]. The data of Blum and co-workers [24], shown 
in Fig. 3, was based on TEM. The best-fit line suggests 
that l _~ 1.57 rather than 2. The data of Daily and 
Ahlquist (etch pit) [36] as plotted by [33] suggests a 
value 'of 1.68. If an average value of 1.62 is used, then 
Equation 4 can be rewritten: 

~flT,~ = ~0 + k3(@ss) ~ (8) 

where ao is the yield stress of the annealed aluminium 
at T, ft. 

There may be an important similarity between 
Equation 8 and Equation 1. It appears that the 
phenomenological relationship between the flow stress 
at a given strain rate and temperature (arlr,~) that was 
based on the observed subgrain sizes of steady-state 
structures (2~s) may genuinely reduce to a relationship 
close to the Taylor equation. We can express the data 
by an equation of form identical to Equation 1 if we 
assume the dislocation density exponent in Equation 
8 is equal to 0.5. Using the data of Kassner and 
McMahon [23] as well as [24, 28], ~ was calculated as 
between 0.21 and 0.88 or roughly 0.55, again in agree- 
ment with the observed values of other materials 
known to harden by increased dislocation density. 
Therefore, the phenomenology of the microstructural 
hardening of steady-state structures of aluminium at 
elevated temperature, which is usually expressed in 
terms of subgrain sizes, can be reasonably described 
by the classic Taylor hardening relationship. 
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Challenges to the proposition of Taylor hardening 
include the microstructural observations during pri- 
mary creep under constant-strain-rate and constant- 
stress conditions. For example, it has nearly always 
been observed during primary (Stage I) creep of pure 
metals and Class II alloys under constant-stress con- 
ditions that the density of dislocations not associated 
with subgrain boundaries increases from the annealed 
value to a peak value, but then gradually decreases to 
a steady-state value that is between the annealed and 
the peak density (aluminium, [24, 36]; 304 stainless 
steel, [35]). Typically, the peak value, Op, measured at 
a strain level that is roughly one-fourth or so of the 
strain required to attain steady state (esfl4), is higher 
by a factor of 1.5-4 [24, 35-39] than the steady-state 
~ss value. This behaviour could be interpreted as 
evidence for these dislocations having a dynamical 
role rather than a (Taylor) hardening role, since the 
high initial strain rates in a constant-stress test may 
require, by the equation 

= k4QmVb (9) 

a high mobile (non-hardening) dislocation density, ~m, 
that gives rise to a high initial value of total density of 
dislocations not associated with subgrain bound- 
aries, r (v is the dislocation velocity). As steady state 
is achieved and the strain rate decreases, so does em 
and in turn 0. It was believed difficult to rationalize 
hardening by "forest" dislocations if the overall den- 
sity is decreasing while the strain rate is decreasing. 
Therefore, an important question is whether the 
Taylor hardening perhaps observed in steady-state 
structure is consistent with the above. 

The trends in dislocation density during primary 
creep have been less completely investigated for the 
case of constant-strain-rate tests. Earlier work by the 
author [17] on 304 stainless steel found that at 0.57Tm 
the increase in flow stress by a factor of 3 is associated 
with increases in dislocation density with strain that 
are consistent with Equation 2. The author's data 
at 0.63 Tm [18] is shown in Fig. 4. A peak density 
during primary creep is not observed in the constant- 
strain-rate case, here or at 0.57 Tm. Rather, it appears 
that the dislocation density monotonically increases 
to the steady-state value. As mentioned earlier, the 

against e trends and a microstructurally based 
equation in which a dislocation-hardening term domi- 
nates accurately model the observed stress-strain 
curve here as well as at 0.57 Tm. 

This study attempted to establish the ~-~ trends in 
constant-strain-rate tests in aluminium at elevated 
temperature. In particular, 371~ and a strain rate of 
5.04 • 10-4see -~ were chosen (five-power-law con- 
ditions). It would then be determined whether dis- 
location hardening alone could rationalize these 
trends as well as the established constant-stress trends. 
Earlier work by the author established preliminary r 
trends in aluminium deformed at a constant strain rate 
at 0.69T m [23]. Although the sample-preparation 
techniques that were utilized [23] were reliable for )o 
and 0 measurements, they may have been slightly 
inaccurate for r determinations because of  a grinding 
step (possibly a 10-20% overestimation). In this 
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Figure 4 (a) The dislocation density in the subgrain interior against 
strain, and (b) the stress against strain behaviour of 304 stainless 
steel deforming under constant-strain-rate conditions at 865~ 
Data is from Kassner et al. [18]. 

study, 0 was measured in essentially an identical 
manner except that the grinding step was eliminated. 
The data of this and the previous study are shown in 
Fig. 5. The stress strain curves show, as does the inset 
of Fig. 2, a non-negligible flow stress in the absence of 
a dislocation substructure (53% of the steady-state 
stress here). The current and previous dislocation den- 
sity measurements are in close agreement. The bracket 
in Fig. 5 at strains above 0.20 is the range of average 
densities observed at nine strain levels within steady 
state [23]. Also, the 0-e, trends here are similar to those 
of the stainless steel, where presence of forest dis- 
location hardening is fairly convincing. 

Taylor hardening may be occurring here despite 
only a modest increase in 0 (55%, based on 0 at 
% = 0.03) to steady state. The argument for Taylor 
hardening is made in the following. From Equation 9: 

= k4OmVb 

We assume [40, 41] 

V = kso  "l (10)  

and therefore for constant-strain-rate tests: 

= k4ksOmbO- (constant strain rate) (11) 

At yielding, ep (plastic strain) is small, there is minor 
hardening, and the mobile dislocation density is 
approximately equal to the total density: 

kO(~:p~-0) "~ 0m(r,p-0) 

therefore, 

~Om(t;p-~ 0) ~- 0.640~s (based o n 0 a t %  = 0.03) 

Also, from Fig. 5, ay/a~, -~ 0.53. Therefore, at small 
strains, 

= k 4 k s O . 3 4 6 ~ o ~ b  

(constant strain rate at e ~  0.03) (12) 

At steady state, cr = a~,a and #m = fm~%, wherefm is 
the fraction of the total dislocation density that is 
mobile, and 

~ss = k4ks/m~~176 b 

(constant strain rate at ~p > 0.20) (13) 

By combining Equations 12 and 13, we find thatf~ at 
steady state is equal to about 1/3. This suggests that 
during steady state only 1/3 of  the dislocations are 
mobile and the remaining 2/3 participate in harden- 
ing. The finding that a large fraction are immobile is 
consistent with the observation that increased disloca- 
tion density is associated with increased strength 
(Equation 8). Of course, there is the assumption that 
the stress acting on dislocations as a function of 
strain (microstructure) is proportional to the applied 
flow stress. Furthermore, we have presumed a 55% 
increase in 0 over primary creep. Although this is 
similar to the 304 stainless steel findings, there remains 
uncertainty in the 0 determinations here. These two 
points certainly delineate the tentative nature of the 
calculation Offm. 

For the constant-stress case we again assume that 
~)m ~-- 0 at % --~ 0 and: 

~5%__0) = k4~o%_o)kso-ssb (constant stress) 

or 

~%--0) = k4ksOp~Yssb (14) 
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where Op is the peak dislocation density, which will be 
assumed equal to the maximum dislocation density 
experimentally observed in a O-e plot of a constant- 
stress test. Since, at steady state, 

g~s ~-- k4k s(O~s/3)cr~b 

then 

4,o~0/~s -~ 30p/0s~ (constant stress) (15) 

Though the assumptions have been quite simple, 
Equation 15 is still interesting because it suggests that 
fractional decreases in ~ in a constant-stress creep test 
are not equal to those of 0. This apparent contradic- 
tion to purely dynamical theories (i.e., Equation 9) is 
reflected in experiments [24, 36-38] where the kind of 
trend predicted in Equation 15 is observed. The obser- 
vations of ~ against e in a constant-stress test at the 
identical temperature can be used to predict roughly 
the 0-e curve in aluminium at 371~ and about 
7.8 MPa. If we use small plastic strain levels (e.g. 
e ~- %/4 where 0 values have been measured) we can 
determine for aluminium an average value of the ratio 
[~p=(~/4)/~, .... ] in a constant-stress test. This value 
seems to be roughly 6 at stresses and temperatures 
comparable to the present study [14, 24, 27, 36, 42]. 
This ratio was applied to Equation 15; the estimated 
0-e trends are shown in Fig. 6. This estimate, which 
predicts a peak dislocation density of 2.0 0s~, is con- 
sistent with the general observation mentioned earlier 
for pure metals and Class II alloys that 0p has been 
found to be between 1.5 and 4 0~ (1.5-2.0 for alu- 
minium [24, 36]). 

It should, perhaps, be mentioned that other expla- 
nations of the primary creep 0 and ~ behaviour curves 
have been made. For example, Barrett et al. [43], who 
assumed that all dislocations within the subgrains are 
mobile, suggested that the dislocation velocity must 
decrease during a constant-stress test in Fe-3% Si to 
be consistent with experimental determinations of 
and Equation 9. The decrease in v compensates for a 
decrease in ~ that is larger by a factor of 2 than the 
decrease in 0 (a decrease in v is not necessary accord- 
ing to Equation 15). Although an explanation for 
changes in v was not given, a similar claim might be 
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made for constant-stress creep test of aluminium. 
Furthermore, and perhaps consistently, it might be 
suggested that v is clearly independent of e (rather 
than increasing with e) in a constant-strain-rate test. 
If these propositions could be accepted, then the 
observed data could be argued to be equally consistent 
with a purely dynamical role for dislocations. 

4 .  S u m m a r y  
It has been established in earlier work by the author 
that dislocation hardening accounts for elevated- 
temperature strength of both primary and steady-state 
creep microstructures of 304 stainless steel. It was 
shown here that the dislocation strengthening is con- 
sistent with the Taylor law if a realistic "friction" 
stress is utilized. Furthermore, if a realistic friction 
stress is again considered, the phenomenological rela- 
tionship between Qss and 2ss of aluminium can be 
utilized to show that the flow stress of aluminium at a 
fixed T and ~ obeys a Taylor-like equation. Whereas 
network dislocations may dominate the microstruc- 
ture during steady state, mobile dislocations within 
the subgrain interior compose the majority of dis- 
locations during early primary creep. As a result, 
"peak" dislocation densities are observed during 
primary creep under constant-stress conditions. 
Furthermore, the interior dislocation density increases 
only modestly during primary creep under constant- 
strain-rate conditions. Both of these dynamical mani- 
festations, however, are not inconsistent with harden- 
ing due to network refinement. 
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